BoostcontrolWithTargetBasedReference (2013-05-02 21:57:51)

New Boostcontrol strategy allows even easier configuration since firmware 1.2.9

Overview

PID can be configured to switch to PD when boost is way too low, or to PI when boost is too high


Mattias Sandgren was kind to contribute some documentation embryo - will be moved to [VT help] at "birth-time"

Begin by setting the "Boostcontrol PID integral limit" to 0 and adjust the "refDC Table vs boost target" so that you get a good starting point for enabling the PID regulated boost controller.

Apply max DC until

To shorten turbo spool time you can apply the maximum dutycycle allowed. This can only be done up to a certain limit below the boost target, set this limit here. This must be kept low enough to avoid an initial boost target overshoot that the PID regulation will not be able to stop.

PD control (far from target)

PI control (close to target)

PID overlap range

Boost P, I, D

Boost control PID integral limit

Set how large the integral is allowed to build up. This value is what is added/subtracted to the reference dutycycle in order to reach boost target. In effect setting this to 0 will disable the boost control PID regulation completely and you will just send reference dutycycle to the boost control valve.

(needs some explanation of how much x of max is, like what is normal limit, etc)

Boost PWM maximum value

Limit the maximum dutycycle the boost control valve receives.

Boost PWM minimum value

Limit the minimum dutycycle the boost control valve receives.


Copied from IRC discussions :

Overlap is PID mode, where its far enough from target to still might need the D term

PD is for not winding the integral up when too far from target

PI is close to target (its now control range)

when close to target, PI only is used, as D wouldnt make any big difference anyway

so it can be used with higher settings from far away, still not messing with close to target control

What is the buildup range and control range?

Buildup integral is frozen and control derivate is disabled. It means "too far from target, probably not physically possible to reach, don't build up a integral error" and disabling D term "close enough to target, error for P is small, so no D needed".

Overlap is PID

P is not active between max dc and buildup

Buildup = I frozen outside this range

buildup enables PD

control is PI

between buildup and maxduty there is referece only

Future ?

the buildup range might go, just enabling PD from maxduty

its easier to find the optimal P if its scaled in kpa / %